Step 1 of 3

Write down the 'total volume to be given' (written on the prescription).

Use this formula:

\[
\frac{\text{total volume to be given (in mls)}}{\text{time (in minutes)}} \times \frac{\text{drop factor}}{1} = \text{drops per minute}
\]

Example:

- 1200 mls over 10 hours

\[
\frac{1200 \text{ mls}}{10 \text{ hours}} \times \frac{\text{drop factor}}{1} = \text{drops per minute}
\]

Next>

Step 2 of 3

Write down the time over which this is to be given.

Multiply the number of hours by 60 (minutes in an hour) to find the number of minutes:

10 (hrs) \times 60 = 600 minutes

Remember the formula:

\[
\frac{\text{total volume to be given (in mls)}}{\text{time (in minutes)}} \times \frac{\text{drop factor}}{1} = \text{drops per minute}
\]

Example:

- 1200 mls over 10 hours

\[
\frac{1200 \text{ mls}}{600 \text{ minutes}} \times \frac{\text{drop factor}}{1} = \text{drops per minute}
\]

< BACK NEXT >
Step 3 of 3

Check the 'drop factor' (determined by the administration set). The drop factor is the 'drops per millilitre' delivered to the patient (commonly 15, 20 or 60 drops/ml).

Remember the formula:

\[
\text{drops per minute (dpm)} = \frac{\text{total volume to be given (in mls)}}{\text{time (in minutes)}} \times \frac{\text{drop factor}}{1}
\]

Example:

- Total volume: 1200 mls
- Drop factor: 20 drops/ml
- Time: 600 minutes

\[
\frac{1200 \text{ mls}}{600 \text{ minutes}} \times \frac{20}{1} = \frac{1200 \times 20}{600} = 40 \text{ dpm}
\]

Administration sets

A typical administration set (also called a 'giving set' or 'infusion set'), including tubing, burette, drip chamber and roller clamp. A variety of devices is used to control the volume delivered.

A pump may be available to regulate the IV flow.